Thomas Bullock Church or England Primary Academy

Engage Embrace Care, Achieve

Progression in Calculation Policy

Progression in Calculations

Addition

Objective and Strategies	Concrete	Pictorial	Abstract
Combining two parts to make a whole: partwhole model	Use cubes to add two numbers together as a group or in a bar.		$\begin{align*} & 4+3=7 \\ & 10=6+4 \tag{5}\\ & \begin{array}{l} \text { Use the part-part } \\ \text { whole diagram as } \\ \text { shown above to } \\ \text { move into the } \\ \text { abstract. } \end{array} \end{align*}$
Starting at the bigger number and counting on	Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	$12+5=17$ Start at the larger number on the number line and count on in ones or in one jump to find the answer.	$5+12=17$ Place the larger number in your head and count on the smaller number to find your answer.

Regrouping to make 10.	$6+5=11$ Start with the bigger number and use the smaller number to make 10 .	Use pictures or a number line. Regroup or partition the smaller number to make 10. $9+5=14$ 1 4	$7+4=11$ If I am at seven, how many more do I need to make 10. How many more do I add on now?
Adding three single digits	$4+7+6=17$ Put 4 and 6 together to make 10 . Add on 7. Following on from making 10, make 10 with 2 of the digits (if possible) then add on the third digit.	Add together three groups of objects. Draw a picture to recombine the groups to make 10.	$\begin{aligned} (4)+7+6 & =10+7 \\ & =17 \end{aligned}$ Combine the two numbers that make 10 and then add on the remainder.
Column method- no regrouping	$24+15=$ Add together the ones first then add the tens. Use the Base 10 blocks first before moving onto place value counters.	After practically using the base 10 blocks and place value counters, children can draw the counters to help them to solve additions.	

Subtraction

\begin{tabular}{|c|c|c|c|}
\hline Objective and Strategies \& Concrete \& Pictorial \& Abstract

\hline Taking away ones \& Use physical objects, counters, cubes etc to show how objects can be taken away.

$$
6-2=4
$$ \& Cross out drawn objects to show what has been taken away. \& \[

$$
\begin{aligned}
& 18-3=15 \\
& 8-2=6
\end{aligned}
$$
\]

\hline Counting back \& | Make the larger number in your subtraction. Move the beads along your bead string as you count backwards in ones. 13-4 |
| :--- |
| Use |
| counters and move them away from the group as you take them away counting backwards as you go. | \& | Count back on a number line or number track |
| :--- |
| Start at the bigger number and count back the smaller number showing the jumps on the number line. | \& Put 13 in your head, count back 4. What number are you at? Use your fingers to help.

\hline
\end{tabular}

		This can progress all the way to counting back using two 2 digit numbers.	
Find the difference	Compare amounts and objects to find the difference. Use cubes to build towers or make bars to find the difference Use basic bar models with items to find the difference	Count on to find the difference. Comparison Bar Draw bars to find the difference between 2 numbers. Lisa is 13 years old. Her sister i Find the difference in age be	Hannah has 23 sandwiches, Helen has 15 sandwiches. Find the difference between the number of sandwiches.
Part Part Whole Model	Link to addition- use the part whole model to help explain the inverse between addition and subtraction. If 10 is the whole and 6 is one of the parts. What is the other part? $10-6=$	Use a pictorial representation of objects to show the part part whole model.	Move to using numbers within the part whole model.

Use Base 10 to start with before moving on to place value counters. Start with one exchange before moving onto subtractions with 2 exchanges.

Make the larger number with the place value counters

Draw the counters onto a place value grid and show what you have taken away by crossing the counters out as well as clearly showing the exchanges you make.

When confident, children can find their own way to record the exchange/regrouping.

Just writing the numbers as shown here shows that the child understands the method and knows when to exchange/regroup.

```
836-254=582
    ##00
    200 50 4
    500 80 2
```

Children can start their formal written method by partitioning the number into clear place value columns.

```
728-582=146
    * H
    5
```

Moving forward the children use a more compact method.
This will lead to an understanding of subtracting any number including decimals.

subtraction

	Show children how the concrete method links to the written method alongside your working. Cross out the numbers when exchanging and show where we write our new amount.		

Multiplication

Objective and Strategies	Concrete	Pictorial	Abstract	
Doubling	Use practical activities to show how to double a number.	Draw pictures to show how to double a number.	Double 4 is 8	\square

Counting in multiples	Count in multiples supported by concrete objects in equal groups.	Use a number line or pictures to continue support in counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. $2,4,6,8,10$ $5,10,15,20,25,30$
Repeated addition		There are 3 plates. Each plate has 2 star biscuits on. How many 2 add 2 add 2 equals 6	Write addition sentences to describe objects and pictures.

Arraysshowing commutative multiplication	Create arrays using counters/ cubes to show multiplication sentences.	Draw arrays in different rotations to find commutative multiplication sentences. Link arrays to areas of rectangles.	Use an array to write multiplication sentences and reinforce repeated addition. $\begin{aligned} & 5+5+5=15 \\ & 3+3+3+3+3=15 \end{aligned}$ $\begin{aligned} & 5 \times 3=15 \\ & 3 \times 5=15 \end{aligned}$
Grid Method	Show the link with arrays to first introduce the grid method. 4 rows of 10 4 rows of 3 Move on to using Base 10 to move towards a more compact method. 4 Move on to place value counters to show how we are finding groups of a number. We are multiplying by 4 so we need 4 rows.	Children can represent the work they have done with place value counters in a way that they understand. They can draw the counters, using colours to show different amounts or just use circles in the different columns to show their thinking as shown below.	Start with multiplying by one digit numbers and showing the clear addition alongside the grid. $210+35=245$ Moving forward, multiply by a 2 digit number showing the different rows within the grid method.

			This moves to the more compact method. $\begin{array}{r} 1342 \\ 1318 \\ \hline 13420 \\ 10736 \\ \hline \end{array}$

Division

| Objective and
 Strategies | Concrete | Pictorial | Abstract |
| :--- | :---: | :---: | :---: | :---: |
| Sharing
 objects into
 groups | I have 10 cubes, can
 you share them
 equally in 2 groups? | Children use pictures or shapes to share
 quantities. | Share 9 buns between
 three people. |

| Division as |
| :--- | :--- | :--- | :--- | :--- | :--- |
| grouping |
| Divide quantities into equal groups. |
| Use cubes, counters, objects or place value |
| counters to aid understanding. | | Use a number line to show jumps in groups. |
| :--- |
| The number of jumps equals the number of |
| groups. |

Division with a remainder	$14 \div 3=$ Divide objects between groups and see how much is left over	Jump forward in equal jumps on a number line then see how many more you need to jump to find a remainder. Draw dots and group them to divide an amount and clearly show a remainder.	Complete written divisions and show the remainder using r .
Short division	Use place value counters to divide using the bus stop method alongside $42 \div 3=$ Start with the biggest place value, we are sharing 40 into three groups. We can put 1 ten in each group and we have 1 ten left over.	Students can continue to use drawn diagrams with dots or circles to help them divide numbers into equal groups. Encourage them to move towards counting in multiples to divide more efficiently.	Begin with divisions that divide equally with no remainder. Move onto divisions with a remainder.

	exchange this ten for ten ones and then share the ones equally among the groups. We look how much in 1 group so the answer is 14 .		Finally move into decimal places to divide the total accurately.

